
S: software•
T: target or guest (the emulated machine) (hardware or software, like Windows)•
V: virtual machine•
H: host (the machine that emulates)•

The same as S, since O's interaction with T is often limited to S○

O: Observer•

S can be in machine language○

When S is changed, it's called paravirtualization○

We don't want to change S•

Historic emulation○

Doesn't exist yet (new processors)○

It never existed (JVM)○

Something else is already used (like an OS, e.g. Wine)○

T is not available•

Why

V is less expensive than T•
V is more flexible than T•
V offers a good protection model for S•

Live migration○

State checkpoints○

Apps on different OSs on the
same desktop

○

Replacing hardware with software,
creates new functionalities

•

Also useful when T = H, e.g. when the available hardware
already is the target machine.

V adds a "new layer of indirection" between S and T.

Emulation•
Binary translation (QEMU, JVM)•
Hardware-assisted (Virtualbox)•
Paravirtualization•

Virtualization techniques

Program Counter increment▪

What's the step to consider for capturing different s?○

A description is a snapshot containing all relevant information describing a system's
state

•

Abstraction

Introduction
Friday, August 25, 2017 15:57

 Lettieri Page 1

Program Counter increment▪

Full single instruction execution▪

An abstraction is a sequence of these descriptions•

 is a function, ○

Usually there are more s than s.○

This means that a transition generally involves several transition in the emulation
program: we olny consider a new when the program state is again interpretable
as a .
The observer should only be able to see s, and not s (that could be
meaningless)

○

Deterministic state machines •

Interpretation: •

Each might be equivalente to several ○

 Lettieri Page 2

Emulation program
// C doesn't support exceptions
#include <setjmp.h>

// V-state
memory mem;
cpu_state cpu; // all CPU registers

// Interrupt variables
bool interrupt; // flag for the interrupt request
uint8_t int_vector; // interrupt type

// Interrupt variables
jmp_buf exc_jbuf;
exception exc_type; /* this is global because the stack
 is unwinded during the jump, so
 it cannot be stored in it */

// I/O interfaces
iomap io; // data structure mapping I/O addresses
mem_map mm; // data structure mapping memory mapped (mm) interfaces

raw_instr ri;
decoded_instr di;

void cpu_loop() {

ri = fetch(cpu->ip);
di = decode(ri);
exec(di);

/* obtain the new instruction pointer from
 the interrupt descriptor table */
cpu->ip = read_idt(int_vector);

if(interrupt) {

}

try { // exceptions (not supported in C: see next column)

// …
cpu->ip = read_idt(e->type); // as an interrupt

} catch(exception e) {

}

for(;;) {

}
}

raw_instr ri;
decoded_instr di;

void cpu_loop() {

/* this function stores in exc_jbuf all
 the information needed to jump at the
 current program point and returns 0, so
 this if-branch is always skipped */

// …
cpu->ip = read_idt(exc_type);

if(setjmp(&exc_jbuf)) {

}

ri = fetch(cpu->ip);
di = decode(ri);
exec(di);

/* obtain the new instruction pointer from
 the interrupt descriptor table */
cpu->ip = read_idt(int_vector);

if(interrupt) {

}

for(;;) {

}
}

case . . .
case . . .

// …
a = get_io_addr(di);
v = io_input(a);

// …

case IN:

 break;

// …
v = get_1st_operand(di);
a = get_io_addr(di);
io_output(v, a);

// …

case OUT:

 break;

// Exception example: division by zero exception

so = get_2nd_operand(ri);

throw exception(DIVISION_BY_ZERO);
if(so == 0)

// …
break;

case DIV:

// Protection example: the privileged SIDT instruction

throw exception(GENERAL_PROTECTION);
if(cpu->privilege_level < SYSTEM)

case SIDT:

switch(ri->opcode) {
void exec(decoded_instr di) {

case . . .
case . . .

// …
a = get_io_addr(di);
v = io_input(a);

// …

case IN:

 break;

// …
v = get_1st_operand(di);
a = get_io_addr(di);
io_output(v, a);

// …

case OUT:

 break;

// Exception example: division by zero exception

so = get_2nd_operand(ri);

exc_type = DIVISION_BY_ZERO;

/* if this will be called, the program
 will jump to this point */
longjmp(&exc_buf);

if(so == 0) {

}

// …
break;

case DIV:

switch(ri->opcode) {
void exec(decoded_instr di) {

Emulation
Monday, August 28, 2017 16:55

 Lettieri Page 3

https://stackoverflow.com/questions/2331316/what-is-stack-unwinding

/* otherwise, the interrupt descriptor table (IDT)
 pointer is changed, because SIDT stands for
 "Store Interrupt Descriptor Table" */
cpu->idtptr = …;

 // …
 break;

}
}

// Protection example: the privileged SIDT instruction
case SIDT:

// …

 break;

}
}

// Static mapping: not flexible

case 0x40: /* timer */ break;
case 0x60: /* keyboard */ break;

switch(a) {

}

iodevice *iodev = io.search(a);

iodev->set_register(v, a);
if(iodev != NULL)

void io_output(operand v, ioaddr a) {

}

/* Checks whether the given address corresponds
 to an I/O interface */

 // to some mem. region
iodevice *iodev = mm.search(a); // can be restricted

// writes in the I/O interface's register
iodev->set_register(v, a);

if(iodev != NULL)

mem[a] = v; // normal write
else

void mem_output(operand v, addr a) {

}

// I/O device interface (CPU-frontend interface)

// get contents from register at address a
virtual uint8_t get_register(address a) = 0;

// write v into register at address a
virtual void set_register(address a, uint8_t v) = 0;

public:
class IOdev {

}

// Frontend HDD class

enum { iSN1, iSN2, … };
static const uint8_t WRITE = …;
static const uint8_t READ = …;

uint8_t = SN1, SN2, SN3, SN4;
uint8_t CMD;
uint8_t buf[512]; // interface internal buffer
int next; // next r/w position in the buffer

HDBackend *be; // frontend/backend split

class HDFrontend: public IOdev {

// constructor
HDFrontend(HDBackend *be_): next(0), be(be_) {}

/* the interface might be mounted at several addresses,
 but the lower bits (acting like an offset) always
 identify the same register */
int index = a & ADDR_MASK; // like an offset

SN1 = v;
break;

case iSN1:

SN2 = v;
break;

case iSN2:

...

CMD = v;
break;

case CMD:

// the interface internal buffer has been written

switch(index) {

void set_register(address a, uint8_t v) {

public:

 Lettieri Page 4

// the interface internal buffer has been written

// error: not consistent
if(CMD != WRITE) {

}

// writing in the interface internal buffer
buf[next++] = v;

/* the interface starts writing in the HDD only
 when the internal buffer buf is full */
if(next == 512) {

// computing the Sector Number
uint32_t sn = SN1 | SN2 << 8 | ...;

// real write in the HDD
be->write_sector(sn, buf);

// array index reset
next = 0;

}
break;

case iBR:

...
}

}

...
}

// Frontend-backend interface for block devices

virtual void write_sector(int sn, const uint8_t *buf) = 0;
virtual uint8_t read_sector(int sn) = 0;

public:
class BlockDeviceBackend {

}

// Backend HDD class that makes use of files to emulate the HDD

int fd; // file descriptor
size_t hdsize;
...

class FileBackend: public BlockDeviceBackend {

// constructor

fd(0), hdsize(hdsize_)
FileBackend(const char *filename, size_t hdsize_):

// creates the file if it doesn't exist

// host-side error: the emulator cannot continue
throw ...;

if((fd = open(filename, O_RDWR|O_CREAT, 0660)) < 0) {

}

{

}

~FileBackend() { close(fd); }

// guest-side error: emulating error bit setting
return;

if(outsideHD(sn)) { // SN outside the HDD

}

off_t offset = sn * 512;

/* changes the location of the read/write pointer
 of a file descriptor */
lseek(fd, offset, SEEK_SET);

write(fd, buf, 512);

void write_sector(int sn, const uint8_t *buf) {

}
...

public:

}

// The TLB is an array of 1024 of these entries

 the offset must be added */
uint32_t guest_virtual; /* mapping is b/w pages!

uint8_t* host_virtual; // can be NULL

struct TLB_entry {

};

Write the emulator as a non-privileged program in the host system1.

Lettieri Page 5

The emulator can only interact with the host HW through the OS libraries and primitives○

Write the emulator as a non-privileged program in the host system1.

Define a data structure for each device (CPU, memory, MMU, I/O devices, …)2.
Write a CPU loop code3.

IDTR: Interrupt Descriptor Table Register○

CR0: Status control register○

CR2: Page Fault Linear Address. ○

When a page fault occurs, the address the program attempted to access is stored in the CR2 register, so it can be restored in the Program Counter later.
CR3: it scontains the Page directory address○

All CPU registers need to be considered, even those that are only accessible to privileged software•

This is because the emulator also has to emulate the system software, including interrupts, exceptions and protection.

CPU emulation

Flag for the interrupt request•
Variable for the interrupt type•

If set, the CPU must load the interrupt handler address in the emulated Instruction Pointer, and start fetching again○

The CPU loop must check the interrupt flag after every instruction execution•

Interruption

Division by 0○

General protection○

Page fault○

Gate not present▪

Protection▪

Page fault▪

By the read_idt○

Examples•

They may occur during fetch, decode and execution•
Handled by the try…catch construct•

Exceptions

Example: the SIDT x86 instruction (Store Interrupt Descriptor Table) is a privileged instruction•
Handled in the exec() function•

Protection

I/O devices do not send interrupts directly to the CPU○

The CPU only has one interrupt request pin for all I/O devices○

It collects all interrupt requests1.
It prioritizes them2.
It sends one interrupt at the time to the CPU, with an interrupt source ID3.
If interrupts are enable, the CPU jumps to an interrupt handler routine4.
Upon finishing the routine, the CPU writes an EOI word in an APIC register5.
The APIC is then enable to pass the CPU any possible lower priority interrupts6.

The target system may have an APIC (Advance Programmable Interrupt Controller)○

How they interrupt•

I/O devices are connected to the rest of the system via interfaces1.
Interfaces have a set of registers mapped in I/O or memory space2.

Difference: reads and writes involving I/O registers correspond to real actions▪

That's why they need to be mapped to function (which do some action) instead of simple memory locations▪

In x86, I/O space can only be accessed via the in and out instructions▪

I/O registers look like normal memory locations3.

Interaction•

io is a data structure mapping I/O addresses•

The instruction in charge of writing in memory has to check whether the given address corresponds to an I/O interface○

If it does, the instruction needs to write in the interface's register○

Memory mapped I/O: "Memory-mapped I/O uses the same address space to address both memory and I/O devices. The memory and registers of the I/O devices are mapped to
(associated with) values. So when an address is accessed by the CPU, it may refer to a portion of physical RAM, but it can also refer to memory of the I/O device. Thus, the CPU
instructions used to access the memory can also be used for accessing devices"

•

Intermediate I/O interface's registers values can be skipped during emulation if the action is implemented by a (mostly) non-blocking operation in the host system, i.e. showing characters on terminal○

This option can be set on a file descriptor (even those connected to a terminal, the first three)▪

If it returns error, the emulated input instuction can return the previously read character.□
Any read system call will return an error if no input is available, instead of blocking.▪

They can be implemented with non blocking I/O in the host system.○

The CPU can periodically check a new keyboard value with a read system call▪

The keyboard thread can be blocked in the read system call, ad then we can set the interrupt flag (in shared memory) whenever the system call returns□
Most emulators have just one thread for all the I/O devices because it's block by the select system call, that check all file descriptors (the I/O select loop)□

"Performance degradation observed by an application in contention with other applications for the access to a shared resource"

The interference problem is still present□

One thread for a CPU loop and one or more thread for the I/O devices▪

Using interrupts○

I/O asynchronous events•

Implemented as objects○

In a separate address space▪

In memory space (memory mapped I/O)▪

Recall: interface's registers can be addressed○

I/O devices•

I/O devices

Lettieri Page 6

General strategy

http://x86.renejeschke.de/html/file_module_x86_id_295.html
https://en.wikipedia.org/wiki/Memory-mapped_I/O

In memory space (memory mapped I/O)▪

Object representing the I/O devices will implement these functions▪

There will be another interface b/w the I/O object and the host OS□
These objects have to interact with the host OS▪

It only depends on the device (its registers and what they do)

It implements the interface b/w the emulated CPU and the emulated device (the CPU-frontend interface)

Frontend□

It depends on how we are using the host to emulate the device (using a file, a terminal, …)

It implements the interface b/w the emulated device and the host (the host-backend interface)

Backend□

This allows any equivalent emulated device to any possible host resource

It depends on the kind of emulated device

In some emulators these two objects interact through the frontend-backend interface□

Both frontend and backend can be accessed by both threads (the CPU one and the I/O select one)□

It executes an I/O instruction by calling the corresponding set_register()/get_register() method on the device1.
This method will update the I/O object state and will call into the backend (using the frontend-backend interface) to complete the I/O operation2.

CPU thread

It may exit from the select() and find out that the same device needs to be updated (e.g.: a new key has been pressed on the keyboard)1.
It will call some backend function (from the host-backend interface) which will in turn call some function in the frontend (from the frontend-backend
interface)

2.

I/O thread

Typical interaction:

Splitting a device emulation code▪

Common programming interface (just read/write functions)○

Assumption: each interface function is protected by per-object mutual exclusion○

SN1, SN2, SN3, SN4: Sector Number▪

CMD: operation type▪

BR: interface internal buffer▪

Registers○

Write the Sector Number in SN1, …, SN41.
Write the "write sector" code in CMD2.

When it's full, the interface starts writing in the HDD□
Sequence of writes in BR3.

Write○

Hard disk•

1B for ASCII

1B for the background color and blinking

Each byte takes 2B□
Text mode: display organized in rows and columns▪

Graphic mode: pixel matrix, colors must be set▪

Two modes○

Video memory emulated by a plain buffer: writing in it causes no immediate side effect▪

The I/O thread periodically reads it and draw the corrisponding content in a window▪

The video adapter scan the entire video memory in 60fps and displays the output○

VGA-compatible video adapter•

The CPU must be able to read and write into its registers (like EOI)▪

If there are no other interrupts, the APIC interrupts the CPU□
Otherwise, it queues the interrupt request□

I/O devices (the I/O thread) must send their interrupts to it, calling a specific method in its interface▪

Upon writing in EOI (by the CPU [thread]), other possible interrupts should pass□
set_register()▪

IOdev object○

APIC (interrupt controller)•

Pagination can be disabled○

The MMU (Memory Management Unit) translates virtual memory addresses into physical ones•

Physical memory is represented by a byte array called mem•

Mem[4100]: guest virtual address▪

Mem[8196]: guest physical address▪

Address of the location the emulator will actually read□
&Mem[8196]: host virtual address▪

The host MMU will translate &Mem[8196] into the host physical address▪

Example: Mem[4100]will be translated in Mem[8196] by the guest MMU○

Names•

The guest MMU needs to be emulated▪

During loads and stores□
During fetches, since instructions are in memory□

translate_address()whenever the CPU needs to access guest memory▪

MIT's translation diagram□

Directory (10 bits)

Table (10 bits)

Offset (12 bits)

Address is divived in□

MMU steps▪

guest virtual address → guest physical address○

Translations•

Virtual memory

 Lettieri Page 7

https://en.wikipedia.org/wiki/Memory_management_unit
https://pdos.csail.mit.edu/6.828/2009/lec/x86_translation.svg

Obtaining the page table descriptor1.

Each page is 4KB

The 0xFFC00000mask gets the first 10 most significant bits (Page Directory Index)

It is then shifted to the right to 22 bit locations in order to add it to CPU->cr3 (the Page Directory Address)

CPU->cr3 + 4(Bytes) * ((virtual_address & 0xFFC00000) >> 22)

By using the page table previously retrieved

Obtaining the target page2.

Using the Page Byte Offset as it is to get the right word within the physical page3.

It caches recently used translations□

Array of

// The TLB is an array of 1024 of these entries

 the offset must be added */
uint32_t guest_virtual; /* mapping is b/w pages!

uint8_t* host_virtual; // can be NULL

struct TLB_entry {

};

In this way, it'll translate 4100 into &Mem[8196]

In SW it can be faster than it would be in HW because it could require less instructions□

10 lower order bits of the guest virtual page address is ok◊

An hash is applied to the guest virtual address in order to find its entry in the TLB

If the host_virtual entry is not null, the TLB works

Otherwise, ordinary translation, and then the translation result is stored in the TLB

Usage□

TLB▪

Example: 8196 in &Mem[8196]□

The guest physical address is used as an index in the mem array▪

guest physical address → host virtual address○

Translated by the host MMU▪

host virtual address → host physical address○

IA-32 stands for "Intel Architecture, 32-bit"•

Recall: disp(base, index, scale) = base + (index * scale) + disp▪

They have variable length▪

Structure▪

[Prefix] Opcode [Mod R/M] [SIB] [Displacement] [Immediate
operand]

Length

Notes REP, REPE, REPNE for string
instructions

•

LOCK, to lock the bus for
atomic operations

•

"large" operands default size•

pushl %eax
encoded in just 1B

•

Might include up to 3
bits that encode a
register operand Register•

Immediate•

...○

Memory•

Encodes the mode of
one of the two operands Scale•

Index•
Base•

It encodes:

of memory operand
expressions like:
16(%ebx, %ecx, 4)

The "16" of
16(%ebx, %ecx, 4)

Encodes the value
of operands, such
as $1000

Complex instruction fomat○

Arithmetic, compare, logic, shift and rotate instructions...□

Its updates can be delayed since EFLAGS is read only by conditional jump instruction□

Almost every instruction update it▪

Parity flag: set if the result is even□
Adjust flag: set if there's benn a borrow/carry out of the four LSBs in the result□

Some flags are complex to compute▪

EFLAGS register○

Emulation is hard because of•

The IA-32 or i386 instruction set architecture (ISA)

 Lettieri Page 8

What is it
Translating guest code in host code

Avoid translating frequent guest codes•
Translated code can be optimized since the emulator knows the whole code•

I/O, virtual memory and multi-threading code remains the same○

The CPU loop is improved•

Translation cache (caching host codes)

In this way, the corresponding bytes pointed by the jump instruction are certainly instructions▪

It's certainly followed by other instrucitons, until another branch or jump▪

It starts with an instruction which is the target of a jump○

A DBB stops even after unconditional jumps, because it's impossible to determine wheter the following bytes are
instructions or data

▪

It ends after the first branch or jump instruction○

Thanks to DDBs it's possible to only translate code that's actually going to execute○

They contain target instructions in the target memory○

DBB (Dynamic Basic Blocks): guest code block•

They contain host instructions○

In this way, after the execution of a TB, the current value of the guest instruction pointer can be used to find the
next TB to execute

▪

Identified by the guest address of the first instruction in the corresponding DBB○

TB (Translated Block): translation of a DBB•

CPU loop modification•

tb = find_in_cache(CPU->ip); // pointer to a TB descriptor

tb = translate(CPU->ip);
add_to_cache(tb);

if(!tb) {

}
exec(tb, env); // env contains the guest environment (CPU, memory, ...)

for(;;) {

}

During the execution of each TB, instruction rearrangements, omissions and optimizations are
allowed, since intermediate s must not necessarily have their corresponding s

○

State snapshots are taken just before the execution of each DBB•

Translation

It can be done when the register content or memory operand is known to the optimizer▪

Replacing a register or memory operand with an immediate operand○

Example○

movl $0, %eax
... // no other updates involving %eax
incl %eax
movl %eax, %ebx movl $1, %ebx

Constant propagation1.

Dead code elimination2.

Translation optimizations

Binary translation
Wednesday, August 30, 2017 16:37

 Lettieri Page 9

Removing host code that cannot affect the state○

Avoiding updating EFLAGS▪

addl %eax, %ebx /* flags not computed: they would be overwritten by the
 next operation */
subl $1, %ebx

Relative jump case: the IP can be updated only before a relative jump instruction

Subroutine call case: the IP is usually placed on the stack when calling a
subroutine. This value will come back in the IP register after a RET instruction, so
it's useless to update the IP during the subroutine code



It can be updated at the end of a DBB□

Avoiding updating guest IP register (contained in the cpu_state structure in the emulation
code)

▪

Examples○

Dead code elimination2.

During a DBB, a guest register can be allocated in a host registers (faster than memory)○

Frequently accessed guest registers may be mapped always in the same host register, like the guest ESP (stack
pointer) register

▪

Mapping can be different for each DBB○

Register allocation3.

Instead of updating the EFLAGS register at the end of each DBB, the operands and the result of its
last instruciton could are saved, in case a following guest instruction needs the EFLAGS value

○

Most of the times, the next DBB's first instruction will overwrite the EFLAGS register○

Lazy condition code computation4.

Translated block chaining5.

tb = find_in_cache(CPU->ip); // pointer to a TB descriptor

tb = translate(CPU->ip);
add_to_cache(tb);

if(!tb) {

}

// The old TB can be patched in order to avoid returning to the
// CPU loop, and start executing the next TB instead.
// If the last instruction is a conditional jump, two possible TBs
// will then be linked

exec(tb, env); // env contains the guest environment (CPU, memory, ...)

for(;;) {

}

Interrupts could be handled after a DBB's translation○

Equivalent to putting the interrupt checking code at the end of each TB, before jumping
to the next one

□
Chaining must be disabled if there is a pending interrupt▪

However, if chaining is used, the exec() function could take a lot of time○

Handling interrupts1.

Faults can happen within a DBB○

Unlike interrupts, they cannot be delayed○

The corresponding setjmp() will then read the guest interrupt table and change the guest
IP accordingly

▪

They can be handled with a longjmp() invocation that jump to the main loop○

The guest fault handler may need the contents of all guest registers

Handling faults2.

Bynar translator problems

 Lettieri Page 10

Register allocation: the table that maps guest registers into host registers can be used
to update all guest registers

□

Dead code elimination: guest state updated before any instruction that could cause a
fault

□

Most complicated cases: a consistent state should be restored and DBB translation
should be disabled (single instructions should be fetched and executed instead: this is
called switching to simulation)

□

Registers content reconstruction depends on used optimizations▪

The guest fault handler may need the contents of all guest registers○

Previous examples omitted virtual addresses translation○

Code is the same▪

Software TLB can still be used▪

Addresses must be translated from virtual to physical during each operation involving memory○

Virtual memory3.

Translated block containing modified code must be invalidated○

Mantain in some data structure the range of guest addresses containing translated
code

1.

Check it before each guest memory write2.

SW only solution▪

Write-protect guest memory parts containing already-translated code1.
Upon a page fault involving a page containing modified code, invalidate the
corresponding translation cache entry so the CPU will be forced to re-translate
the DBB containing code

2.

Steps□

The binary translator is an unprivileged programing running on a OS

It doesn't have direct access to page tables

It cannot directly intercept page faults

Problem□

Allocate guest memory with mmap() (so mprotect() can be used later on)1.

Normally, the SIGSEGV signal is generated by the kernel whenever the current
process tries to access memory in a manner that violates the protections (e.g.:
program trying to read/write outside the memory it is allocated for it)

◊

From <http://man7.org/linux/man-pages/man2/mprotect.2.html>

Normally, this would cause the termination (with a "Segmentation
fault" message)



The specified handler invalidates the translation cache so the CPU
will be forced to re-translate the DBB containing code



In this case, SIGSEGVwill be generated when a process tries to write into a
protected TB page containing code

◊

Set a function to handle the SIGSEGV signal with signal()2.

void* addr, size_t len: to specify the corresponding pages◊

int prot = PROT_READ | PROT_EXEC for read-only permission◊

After a DBB translation, use mprotect() to remove the write permission for the
corresponding pages in the guest memory

3.

Solution□

This TB cannot invalidated in the translation cache since it is currently being
executed



Switch to simulation (emulating one instruction at a time) until the execution of 

Code block tries to modify itself□

SW + host HD solution▪

Since code is just data in the guest memory, any guest write to memory must be checked○

Self modifying code4.

Lettieri Page 11

this block is over

http://man7.org/linux/man-pages/man2/mprotect.2.html
https://www.tutorialspoint.com/c_standard_library/c_function_signal.htm
http://man7.org/linux/man-pages/man2/mprotect.2.html

Executing target machine instructions directly on the host processor, as much as possible•
"Hardware is needed to maintain the correspondence b/w the virtual machine state and the target state"•

What is it

It obtains a large speedup w.r.t. to classic emulation•

Why

There can happen that they both have the same architecture○

When the host machine understands a superset of the target machine instructions•

If architectures are similar, it means that the target machine hardware is not so unavailable○

When flexibility and security are the real virtualization motivations•

When it can be done

The Machester Baby has 32 words of memory, but the addr register is 13 bits wide○

To use the addr register completely, we can emulate a machine with addressable words○

Instead of buying expensive additional tubes to display all the 8196 memory contents at once, we can add an MMU and another cheaper storage
in which we can store everything

○

The MMU will have a register containing the word that is currently in the Machester Baby machine, and it will swap pages from the cheaper
memory storage (acting like an HDD) to the Manchester Baby machine, that has only 32 words of memory (hence it can just contain one page at
a time, acting like a sort of cache)

○

The MMU and the additional cheaper memory storage are not part of the original Manchester Baby machine, but all of these 3 components
belong to the target machine

○

In short:○

Target machine Virtual machine

Snapshots are still taken before fetching a new instruction▪

Machines▪

 : accumulator. The only register that the machine can use temporarily□
 : instruction pointer□
 : memory (8192 words)□

 ▪

 ▪

Its elements:

Where is the real 32-words memory.
If is such that , it means that the location at address is actually in the real 32-words memory.

 is a 8192-elements vector representing the target memory□
 function that maps virtual memory into the target memory▪

Defined as □

Interpretation function ▪

Formalization○

Making full use of the Manchester Baby's addr register1.

Simple HW assisted virtualization examples

MMU

HW assisted virtualization
Sunday, September 17, 2017 17:38

 Lettieri Page 13

Target machine has a bigger tube memory▪

Host machine has a cheaper storage memory ▪

 ○

The MMU would only translate addresses for pages already loaded in memory□
It would raise exceptions for those which are not in it□
Exception would cause the execution of virtual machine software that implements swapping□

If real memory would have had more than 1 word in its memory, part of the virtual machine logic would have been implemented in software▪

In fact, the exception is raised via HW, and the swapping part is made by SW□
Additional hardware would still be needed▪

In this case it's the MMU that does all the translation job.○

Host phyisical processor = host processor▪

Virtual processors are multiplexed on host processors▪

Multiprogramming: emulating a target machine which has more processors than the host machine○

Otherwise each target process' private memory should be be virtualized▪

Assumption: target machine has shared memory○

The virtual processor: multiprogramming2.

 : register contents of all virtual processors▪

Register contents of the host processor□
One data structure for each virtual processor, containing a copy of virtual processors registers□
Current virtual processor ID□

 ▪

Virtual processor changing could be timed by a timer□
This context switching (un/loading processors' registers) is made in SW□

Virtual processor change consists in loading all processor's registers and let it continue its execution▪

HW could invoke the context switching SW (e.g.: timer)□

In the "user" level, the processor cannot access to that data structure◊

The timer changes the privilege to the "system" level1.
This causes jump to the virtual machine SW that performs the context switch2.
A special system-instruction can then return at the "user" mode3.

Can be done by introducing privilege levels on the host processor: "system" and "user"

The data structure containing all virtual processors' registers contents should be only accessed by SW that implements the virtual
machine, and not by the target SW running on virtual processors

□

Hardware assistance▪

2.1 Simple case: one host processor

 Lettieri Page 14

Full processors○

Memory○

I/O peripherals○

A complete virtualization of a computing system•

They cannot be executed directly as they would affect the state of the entire host
machine. Just virtual register copies should be affected

▪

At the same time, instruction should be executed directly on the host HW to improve
performance

▪

The OS has access to privileged registers (%cr3, %idtr, …) and instructions that
manipulates them

○

Virtual machines emulate OSs•

What are they

Target and host architecture is the same•

System: virtual machine monitor (implementing the virtual machine)○

User: software running inside the virtual machine (in this case, originally written for the
target one)

○

Two levels of privilege•

Result: target machine system SW will only run at user privilege•

The host processor raises exception for privileged instruction at user level (hence by the
target SW)

○

The virtual machine monitor intercepts (handles) them and emulate their effect on the
virtual state (this is why it's called trap and emulate)

○

Handling target machine's privileged instructions•

popf instruction: it might be used to disable host interrupts.□
This instruction "pops" 2 words from the stack and stores them in the EFLAGS register.
Since EFLAGS contains the interrupt flag IF, if a target SW tries to execute this
instruction, it may think that IF has changed, while it's not changed both on the virtual
machine and on the host machine (that doesn't raise exceptions, but it won't execute it
either)

Some privileged instructions do not raise exceptions when executed at user level▪

The SW running inside the VM may detect it's not running on the host machine by
comparing the actual content contained in the %cr3 register with the value that the SW
is trying to write in it

□
Exceptions are raised upon writing in special registers, but reading is allowed▪

Why○

Hardware-assisted virtualization for all target userspace SW▪

Switching to binary translation (one instruction at a time) for target system SW▪

VMware's solution○

Trap-and-emulate virtual machine monitors cannot be implemented on Intel x86 processors•

Intel and AMD have virtualization extensions on their processors•

Trap and emulate

Virtual machines
Sunday, September 17, 2017 23:07

 Lettieri Page 15

"Kernel" of VMs•
VMM/kernel analogy•

Kernel on multiprogrammed systems VMM

Guest: SW running inside a VM•

As kernel does it with processes○

Each guest may be a multiprogrammed system with its own kernel that manages processes○

The VMM supervises the execution of the guests, so they cannot interfere with each other and with the host•

The virtual machine monitor
Monday, September 18, 2017 16:06

 Lettieri Page 16

Also AMD has done this, but it's not compatible with Intel VMX○

Intel's CPU extensions designed to support VMMs•
What is it

Intel CPUs have now 4 modes•

Root and non-root modes

Root
For the VMM

Non-root
For the guest SW running in the VM

Keeps distinction b/w user apps and OS-
kernel inside the VM

System
privileged mode

root/system non-root/system

User
unprivileged mode

root/user

Normal host userspace apps (not
belonging to any VM) can run in
this mode.
This can be found when a VMM is
part of a OS.

non-root/user

They've been introduced to put HW-controlled limitations to the guest SW•

Normally the guest SW is running in the VM (non-root mode)1.

would violate the isolation of the VMM□
must be emulated via SW□

Whenever the system code tries to execute an instruction that2.

So the VMRESUME instruction goes in root mode (returning control to the VMM)□
This is a VM exit□

The HW can trap it and switch back to the VMM via the VMRESUME instruction

The VMM will complete the emulation of the action initially executed by the guest code3.

So the VMLAUNCH instruction goes in non-root mode (returning control to the guest SW running
in the VM)

□
The VMM gives control back to the guest via the VMLAUNCH instruction4.

Typical cycle○

The VMRESUME and the VMLAUNCH instructions are only allowed in root/system mode○

Mode-switching instructions•

The VMCS contains all the infos needed to manage the new non-root mode•

Only one VMCS at the time is the current one on the physical processor○

VMPTRLD ("VM pointer load") instruction to load a new VMCS address, making it the new current one▪

The processor has a register pointing to the current VMCS○

All VM instructions (VMRESUME, VMLAUNCH, …) use the current VMCS○

One VMCS for each processor of each VM•

Fields•

Don't know Posted Interrupt Descriptor (PID) pointer•

Guest state
Loaded from here during a VM enter•
Stored back here during a VM exit•

Virtual processor's state (registers)

The virtual machine control structure (VMCS)

VMLAUNCH 2.

VMRESUME1.

INT1. IRET2.

More privileged Less privileged

Intel VMX
Monday, September 18, 2017 16:15

 Lettieri Page 17

The first instruction that the VM will execute○

The last instruction that caused a VM exit○

The %ip's content determines•
Interesting registers:

Host state
Loaded from here during a VM exit•

Physical processor's state (registers)

Thanks to this, the guest can manipulate real processor's registers without
affecting the host state.

The %ip's content determines the point from which the host machine will
keep executing.

•

Will examine the exit reason1.
Will perform the necessary emulation2.
Will re-enter the non-root mode (VMLAUNCH)3.

This should be the entry point of a VMM routine that

Interesting registers:

VM execution control
Unallowed action will cause a VM exit•

What's allowed and what's not during non-root (VM) mode

CPU may serve the interrupt using the guest's IDT w/o leaving non-root mode○

VM exit: the VMM regains control regardless of the guest's IF value○

CPU behaviour upon receiving an external interrupt while running in non-root
mode

•

Flags for htl, invlpf, reading/writing %cr3, …○

Should some critical instructions cause a VM exit or not?•

Page faults, …○

Should some exceptions cause a VM exit or not?•

Generic flag for any in/out instructions○

Bitmap with a flag for each of the 65536 possible I/O registers (8 KiB)○

Should I/O operations cause a VM exit or not?•

Interesting flags:

VM enter control

Fake external interrupt○

Exceptions○

Faults○

Fields to ingect an event during a VM enter•
Behaviour during the root → non-root transition

VM exit control
External interrupt: should the CPU obtain the interrupt vector?•

For external I/O interrupts coming from passed-through devices, it obtains
it from the Notification Vector NV from the Posted Interrupt Descriptor PID

○

It obtains the interrupt vector during the VM exit 1.

It stores the interrput vector it in the VMCS2.
The VM exit jumps to the address stored in Host state3.
The VMM reads the vector in the VMCS and jump to the interrupt
handler via SW

4.

Yes○

The VM exit jumps to the address stored in Host state▪

Since external interrupts are disabled during the VM exit, the VMM re-enables
them via the STI instruction

▪

It obtains the vector□
It jumps to the proper interrupt handler□

The processor will complete the protocol with the interrupt controller▪

No○

The interrupt controller sends the request1.
The processor has to reply and obtain the interrupt vector from the interrupt controller2.

Recall:

Behaviour during the non-root → root transition

VM exit reason Code identifying the reason•

I/O register's address •
Exception type•

Additional info•

Examples

 Lettieri Page 18

Some instructions like popf and reading from %cr3 were difficult to virtualize on the Intel x86•

It cannot be executed at host user privilege since the CPU won't raise any exception and it won't even
change the guest EFLAGS content, that should be modified

▪

Recall: it might be used to disable host interrupts, since it pops 2 words from the stack and stores them into
EFLAGS, that contains the interrupt flag (IF) bit

○

The guest system software will change its IF value ▪

By setting the proper flag in the VM execution control section, the CPU will decide
wheter to receive interrupts or not while running in non-roote mode

□
Host interrupts won't be disabled if it doesn't want to▪

With VMX, the popf instruction can be executed in any non-root mode○

popf1.

The guest is not allowed to write in %cr3 since it would give him full access to the host memory▪

The guest might realize it's virtualized by comparing what it has written in %cr3 and what it can read
from it

▪

Recall: this instruction doesn't case a fault○

Put in %eax the guest's expected value1.
Skip the mov %cr3, %eax instruction by incrementing the guest's IP in its VMCS's Guest section2.
Return to guest mode with the VMLAUNCH instruction3.

With VMX, any read to %cr3 can cause a VM exit.
The VMM will then:

○

mov %cr3, %eax2.

Examples

 Lettieri Page 19

HW-assisted virtualization: when the target machine had no virtual memory

Otherwise it'll be able to interfere with other VMs and with the VMM□

Only access to its dedicated host physical memory▪

Think that it has access to all physical memory, starting from address 0▪

Guest system SW must○

Target (guest) physical memory is a subset of host physical memory•

 is the translation data structure (page directory and present page tables for a guest) that
translates guest physical addresses into host physical addresses

○

Assume the target machine is accessing address a.
In HW-assisted virtualization, also the host CPU will be accessing address , since both CPUs
will be executing the same instructions for most of the time

b.

This will be translated in by the host MMU using c.

Guest-host phyiscal memory mapping is done by the host MMU•

There's a similary with the virtual-memory translation that happens on a classical computer with no
VMs on it

•

Virtual MMU
This doesn't exist in real life This is the only part that exists

Virtual memory virtualization
Wednesday, September 20, 2017 10:19

 Lettieri Page 20

When target machines have virtual memory, they have their own target MMU•

The guest has its own map where any virtual guest address is mapped into physical guest
address

○

The VMM has a mapping that maps any physical guest address into a host physical
address

○

Maps•

Host's complete translation○

Build the map that implements both translations▪

Let the host MMU point at the page tables implementing while the guest is
running

▪

The VMM must be able to○

Combined effect: whenever the guest SW wants to access , the host CPU must access •

"Brute force": updating host page tables as soon as the guest modifies the mapping
(the guest page tables)

▪

The VMM may set up the VMCS so that each write to %cr3 from non-
root/system mode causes a VM exit

1.

When the VMM re-gains control, it can read %eax () and learn the guest
physical address of the page directory that the guest was trying to install
(by using the guest/target 's MMU , I guess, via the VMM software)

2.

Actually done at once with the map ◊

The VMM can use the map to translate this guest physical address into a
host physical address

3.

The VMM is now able to read the guest's page directory4.

The VMM uses all this information to prepare its host page directory
and page tables via

◊

The VMM can then load all guest's page tables, and so on5.

The VMM writes into %cr3 the host physical address of the page directory
it has created

6.

Writing in %cr3 (mov %eax, %cr3)□
The guest can modify the mapping in two ways:▪

The brute force method○

Building the host page tables and let the guest modify the mapping•

 Lettieri Page 21

If so, will this write be propagated to the VMCS?

Does he mean the actual %cr3 host's register?◊

it has created

The VMM modifies the %eip field in the Guest state part of the VMCS
so the guest will skip this instruction

7.

The VMM returns control to the guest via the VMLAUNCH instruction8.

Could be done with any write in memory with an address that involves a
page directory/table



The VMM may write-protect, in the host page tables, the pages that
contain the active guest page directory/tables

1.

The VMM sets up the VMCS so that any write to a write-protected
page causes a VM exit

2.

Upon examining the VM exit reason, the VMM must check if the
address that the guest was trying to write into falls within any active
page directory/table or not

3.

The host page tables

The gust page directory/table

If it does, the VMM must decode the instruciton and update:4.

The VMM then re-enter the VM skipping the trapped instruction5.

Steps

Changing some entries in the page tables in memory (in the mapping)□

The VM must be set up to trap both actions▪

Complex to implement□
Too many VM exits□

Cons▪

Host page tables "like the MMU's TLB", as a "virtual TLB"▪

There must be a VM exit on each invlpg (invalidate page instruction)▪

There must be a VM exit on each page fault▪

So the VMM may operate as in the brute force method

Writing in %cr3: there must be a VM exit□

Guest page directory/tables are not write protected1.
This won't cause a VM exit2.
Therefore, host page table will be out of sync w/ guest page tables3.

The host will cause a page fault, hence a VM exita.
The VMM examies the guest page tables and finds out that the
page was actually present, and updates the host page tables
accordingly

b.

The VMM can re-enter the VMc.

Guest had made present a new guest virtual page◊

Writing in %cr3–

The invlpg instruction–

The only ways to invalidate the TLB area.

Both of these are trapped by the VMMb.
The VMM can invalidate the entire virtual TLB (host page
tables) and update the host page tables

c.

Guest had made non-present an old guest virtual page◊

Presence-bit change example4.

Changing some entries in the page tables in memory (in the mapping)□

The guest can modify the mapping in two ways:▪

The virtual TLB method○

 Lettieri Page 22

Page table extensions to simplify the task of virtualizing guest virtual memory•
Host MMU holds 2 pointers, pointing at•

Host page tables Guest page tables

The only contain the mapping•
Manipulated by the VMM•

They contain the mapping•
Manipulated only by the guest•

 1.

guest virtual → guest physical

2.

guest physical → host physical

 is perfomed in HW by the host MMU•

No need for VM exits•

During translation, each address is a guest physical one, and must be translated into a host
phyisical one by using

○

More difficult binary translation•

Guest page directory access (through the second MMU pointer) to get the guest
physical address of the guest page directory entry

i.

Host page directory access (through the first MMU pointer) to get the host physical
address of the host page table containing the translation of the guest page directory
entry

ii.

Host page table access to get the host physical address of the guest page directory
entry

iii.

Finding the host physical address of the guest page table containing the translation for 1.

Guest page table access (through) to get the guest physical address i.
Host page directory access (through the first MMU pointer) to get the host physical
address of the host page table containing the translation of the guest phyiscal address

ii.

Finding the host final physical address2.

Memory accesses needed to translate •

Extended page tables
Wednesday, September 20, 2017 15:56

 Lettieri Page 23

address of the host page table containing the translation of the guest phyiscal address
Host page table access to get the host physical address iii.

20 accesses on 64-bit CPUs, but there are several TLBs there to help▪

6 additional memory accesses○

Lettieri Page 24

○ Target and host machine have the same peripheral
• A VM can access directly a I/O peripheral

• The VMM is not involved
○ Hence, help from hardware is needed

HW passthrough
Thursday, September 21, 2017

What is it

□ 0: VM exit
□ 1: passthrough

A bit indicates whether the VMM should cause a VM exit or not (letting the HW
complete the operation without the VMM intervention, accessing real I/O
registers) when it accesses that address

▪

The VMM checks this bitmap for all in and out instructions▪

The VMCS contains a pointer to a bitmap containing 1 bit for each one of the possible
65536 I/O registers

○

□ Usually they're the same

The VMM must use the host MMU to map some guest physical addresses to the
host physical register addresses

▪

▪ Registers in a page must belong to one device
□ Because mapping is per-page

○ Memory mapped I/O registers

1. Read and writes to I/O registers

2. DMA
○ Recall

▪ A DMA-capable device is able to read/write on the system memory by itself
The device reads/writes from memory using the address contained in one of its
registers

▪

▪ Steps
1. This register is written by SW by the CPU
2. Later, the device will read from memory using this register

Problem: the guest CPU will write the guest physical address into the host device, not
the host physical address

○

VM/peripheral interactions

14:31

If won't be translated, the guest SW could maliciously access any part of
the host memory

□

This -translation cannot be done as it requires a VM exit for every read
and write operation to device registers to let the VMM translate the address

□

Guest physical addresses were usually translated into host physical addresses by
the host MMU, using the mapping

▪

Scheme▪

Wrong solution: let all addresses go through the host MMU, not only those coming from
the CPU, but also the ones comming from I/O peripherals

○

 Lettieri Page 26

This will let the VM #1 access the VM #2 physical memory at address □

It may happen that when the device is read to access the memory, the VMM has
scheduled VM #2 and, therefore, the address will be translated by using the

mapping (and not)

▪

Scheme▪

Right solution: IOMMU (special additional MMU used just for I/O devices)○

 Lettieri Page 27

Host Device A has been assigned to VM #1, Host Device B to VM #2▪

Remember that all transaction happen on the shared bus□
This is automatically done in PCI express systems because each transaction

contain the triple

□

To allow the IOMMU to choose the right translation, host devices must identify
themselves in each memory operation they issue on the bus

▪

This maps every host device to the corresponding owner's map□
When a device is passed-through, the VMM must add an entry in the
IOMMU datastructure

□

Devices belonging to no host belong to the host, so no translation will be
done

□

The IOMMU uses a dedicated translation data structure in the host physical
memory

▪

So there's no need for the guest physical memory to be always
resident in host physical memory



They can issue page faults (by interrupting the host CPU) if they don't find
the desired memory page in which the devices wants to write into

□

Translations can be cached inside the IOMMU□
There are also TLBs inside the devices□

Intel and AMD's IOMMUs▪

Lettieri Page 28

There are also TLBs inside the devices□

To program DMA accesses b/w devices and swappable userspace buffers□
IOMMUs can be also used by ordinary multiprogrammed systems▪

All interruptions cause a VM exit (handled by the VMM)▪

None of them does (handled by the VM)▪

Until now, during non-root mode○

Interrupts not coming from passed-through devices: handled by the VMM▪

These interrupts may arrive while the interested VM is not running□
A VM CPU has running states□

Interrupts coming from passed-through devices: handled by the VM▪

Running: VM using the host CPU

Ready: host CPU currently used by another VM

Halted: guest SW halted itself

Who handles what with passthrough ○

Interrupt handled by the CPU

Jumping to guest interrupt handler

No VM exit, no VMM involved

If the CPU is running□

Interrupt request stored somewhere

The VM will handle it later

If the CPU is ready□

Interrupt request stored somewhere

The VM will handle it later

If the CPU is halted□

Basic functioning▪

CPU

It has an Interrupt Remapping Table (IRT)◊

Interrupt controller

Must be supported by□

Stored in system memory

One for each VM

64B

Only used by the CPU in non-root mode

Accessible from the VMCS

An interrupt vector is an address of an interrupt handler

The PIR just stores incoming requests, not handlers

Posted Interrupt Request (PIR): it stores pending interrupts, one
bit for each of the 256 possible interrupt vectors

◊

The VM running status, econded with the Suppress Notification
(SN) bit

◊

It contains:

Posted Interrupt Descriptor (PID)□

Implementation: Posted interrupts▪

Handling a passed-through (to the VM) device's interrupt to the host○

Interrupts3.

 Lettieri Page 29

https://en.wikipedia.org/wiki/Interrupt_vector_table

0: the controller must deliver the interrupt (VM CPU running)

1: the controller must post the interrupt in the PID (VM CPU ready or
halted)



(SN) bit

Notification Vector (NV): it contains the interrupt vector
(address of the interrupt handler) of the incoming request

◊

The interrupt controller sets the proper bit in the PIR1.
If SN = 0, it does nothing else2.
If SN = 1, it interrupts the CPU using the interrupt vector in NV3.

Passed-through devices' interrupts handling steps□

The VM execution control section must specify that external
interrupts shuld cause VM exits



The VM exit control section must specify that, upon receiving an
external interrupt, the CPU must obtain the interrup vectore before
exiting



VMCS configuration□

Otherwise there would be a VM exit◊

Passed-through devices interrupt with a special interrupt vector,
called the Active Notification Vector (ANV)



The CPU receives an ANV1.
Via a microprogram, the CPU looks at the PIR and handles all
interrupt vectors that it finds set, w/o leaving non-root mode

2.

Steps

How the CPU is able to distinguish normal interrupt from those coming from
passed-through devices

□

PID configuration□

The VMM creates a PID1.
The VMM writes the PID address in the VMCS of 2.

The vector ◊

The pointer to the PID◊

The VMM fills the IRT's entry for with3.

The VMM prepares a handler for a vector WNV (Wakeup Notification
Vector), different from ANV

4.

The VM will received the passed-through interrupt

No intervention from the VMM

If there is any bit set, it must inhect the ANV when
entering the VM

–

In this way the processor will look at the PIR and
process the interrupts that were posted while the
VM was not running

–

The VMM must look at the PIR

 : SN = 0, NV = ANV◊

Interrupts will be posted in the PIR

No intervention from the VMM

 : SN = 1◊

The VMM must be notified when the interrupt comes

The VMM needs to know that is now eligible for
execution and has to update its own data structure
accordingly



The VMM must move the VM back into the list of the
Ready VMs



 : SN = 0, NV = WNV◊

The VMM updates the PID as follows:5.

(Interrupt to be passed through to VM with vector)

 Lettieri Page 30

That's why NV is changed to WNV–

Since WNV != ANV, interrupts delivered though the
PID won't trigger the posted interrupt processing,
but a VM exit to the VMM that can then process the
event

–

Ready VMs

In order to setup the IRT, the VMM must know the vector , but this vector
is determined by the guest. The VMM may discover by intercepting guest
writes to the interrupt controller registers

□

Lettieri Page 31

• Centralized file server
○ Users may access their files from any client

Client file system management is simplified (OS installed and upgraded only once on the
server)

○

• Cloud data centers
○ VMs are clients

File systems and VMs can be stored in different servers, so VM migration won't require large
files transfers

○

Distributed file systems
Friday, September 22, 2017 18:15

Network File System•
It's a protocol b/w a client and a server for distributed file systems•
Developed by Sun Microsystems•
Platform-independent: exchanged mesages use the XDR format (eXternal Data Representation) to
be architecture-indipendent (little-endiand, big-endian)

•

No userspace program (like ls, cat, …) needs to be modified in order to use remote files○

One local access implementation▪

One remote access implementation with RPCs▪

Made possible by an abstract interface inside the kernel through all file operations are
performed

○

OS-independent: users can mount a remote file system on a directory and then use remote files
almost exactly like the local ones

•

What is it

Architecture

The client issues Remote Procedure Calls (RPCs)•

With parameters and replies○

NFS defines a set of RPCs that the server must implement•

Synchronous (blocking) RPCs•
The NFS servers runs in a kernel thread•

It doesn't store any information about clients▪

Crashed server won't have to recover any state after a reboot▪

Server is stateless○

The effect of issuing the saonceme RPC several times in a row is the same as issuing it only ▪

Requests can be re-sent after a timeout: duplicate requests cause no problems▪

RCPs are idempotent○

Crash recovery techniques•

NFS
Friday, September 22, 2017 18:18

 Lettieri Page 33

Requests can be re-sent after a timeout: duplicate requests cause no problems▪

It returns a file descriptor▪

A file descriptor is an index in small per-process table stored in the kernel▪

The stateless NFS server has no such table▪

It contains all the information needed to find the file□
It must be sent by the client at each request□

File system ID (identifies the file system on the server)

inode number (identifies the file in the file system)

Generation number (because inode numbers are reused, and it's
incremented when it happens)



Structure□

The open() RPC returns a file handle▪

open()○

The kernel moves the read pointer, so it's not idempotent▪

The read pointer must be remembered by the client and passed at each read request▪

read()○

Same problem with the write pointer, which will also be mantained by the client and
passed at each write request

▪

write()○

The close() RPC is called□

Temporary files cleanup made by the kernel, even after a crash

Not possible on a stateless server which doesn't know which files are
opened by clients



It's no longer open in any process□

It removes the file name from the file system, but it doesn't delete the file until▪

Deletion of open files is stil possible□

The unlink() RPC only renames the file, and it'll be deleted just with the delete()
RPC

▪

unlink()○

Unix filesystem's APIs are stateful•

Packets loss, duplications and reordering is not a problem since clients resend a request
after a timeout

○

UDP/IP is used•

Cached data is valid for a limited time, after which becomes stale▪

Read RPCs' results are cached locally (so future reads won't call a RPC)○

Local writes are first accumulated in the buffer: this reduces the number of write RPCs○

Clients' buffer caches are used to improve performance•

Performance

Solution: global namespace for UIDs and GIDs○

Unix UID and GID belong to processes within a client, but they must be checked on the server•

Not an effective solution○

The root user on the client is mapped to user nobody on the server•

No authentication•
File handles can be forged•

Limitations

Lettieri Page 34

Typically, each VM only runs just one application•

Most of the costs of virtualization come from the need to intercept and emulate actions
perfomed by the guest OS kernel that assumes it has direct access to the HW

○

Can be the guest OS changes as long as the OS API remains the same?○

Should the OS really be unmodified? Should it be the same OS that runs on real HW?•

Introduction

Hypervisor = VMM•
Kernels are ported to different machines (having a different architecture) just by modifying the
short-assembly code related to the underlying machine

•

For example, in the "VM architecture", the MMU can be accesses by issuing calls to the
hypervisor, instead of writing into registers

○

Kernel may be optimized for the virtual architecture (paravirtualization)○

At Xen they observed that a VM can be seen as just another (virtual) architecture to which a
kernel may by ported

•

Instead, they use hardware extensions○

It avoids inefficient emulation of hardware I/O devices▪

New virtual-only devices are defines, and just drivers need to be defined for them▪

Paravirtualization is still used in I/O○

Xen does no longer user paravirtualization for virtualizing the CPU•

Very small kernel that is loaded first on the machine and gains direct control to the
hardware

○

So a domain can contain an entire OS□

Standard

Unmodified (HW-assisted virtualization)

Using Xen APIs to improve performance

Kernels running in each domain can be□

Domains are used to implements VMs▪

Special domain□
It has access to the Xen API to create and destroy other domains□
It usualy contains Debian w/ Xen management tools□

Dom 0▪

Can be given direct access to some I/O devices□
Can use fully virtualized devices□

Front-end

Runned in a domain which has direct access to HW devices (like Dom
0)

◊

It gives indirect access to several front-ends◊

Back-end

Can use paravirtual devices□

Other domains▪

On top of it (lower privilege level) there are domains○

Architecture•

The Xen hypervisor

 is the translation made by the guest kernel○

 maps guest-physical addresses into host-physical addresses. It's used to:

Unmodified kernels use a set of page tables that or not the ones actually used by the MMU•

Virtual memory paravirtualization example

Paravirtualization
Friday, September 22, 2017 22:58

 Lettieri Page 35

Create the illusion of contiguous memory in the guest kernel▪

Writes to host page tables are denied□

The guest kernel can read A and D bits updated by the host MMU, so there won't be a VM
exit to let the hypervisor (VMM) sync host page tables with guest page tables



Reads can't be allowed because otherwise the guest kernel would know that its memory
it's not contiguous



Reads to host page tables could be allowed for performance…□

Limit access from the guest kernel to the pages that have been assigned to it▪

maps guest-physical addresses into host-physical addresses. It's used to:○

They know the distiction b/w guest and host physical addresses○

They can read host page tables○

A paravirtual kernel must call an hypervisor protected routine (hypercall) when it
wants to update its page tables

1.

The hypervisor will then check if the paravirtual kernel can or not2.

Writes to host page tables are still denided○

Paravirtual kernels (they know they're runned in a VM)•

Lettieri Page 36

• Kernels directly linked to an applicatoin
• They're like a normal library that can be loaded and run directly on the HW machine

○ Standard function calls
○ They don't involve a privilege level change

• They usually provide a single process

Unikernels
Saturday, September 23, 2017

What are they

• Unikernels contain low level access code to the HW
• Standard libraries don't

Unikenels vs standard library

• VMs can provide a well defined set of I/O interfaces.
Maintaining a unikernel is simple becuase it won't have to provide drivers for the large variety of
HW devices
Hypervisors already provide the isolation needed to run different applications: no need to do the
same thing in VMs

•

Unikernel with VMs

• Memory needed from VMs is much less
• Lighter: faster bootstrap, improved performance
• Unikernels run just one application: no need for protection

Unikernels vs full OS

11:16

OS feature•

Isolate a set of processes○

Make them think they're the only ones running on the machine○

A way to•

Less memory, less disk space, less CPUs, less network bandwith, …○

Containers generally have less resources•

What are they

Processes running inside a container are normal processes running on the host kernel○

There's no guest kernel running inside a container○

There can't be any OS in a container, since the kernel is shared with the host○

Containers are not VMs•

Performance: no penalty in running an application inside a container compared to running it on
the host

•

Security: VMs have a smaller attack surface than containers•

Containers vs VMs

Used to segregate system resources so they can be hidden from selected processes○

The inode□
The root directory□

The kernel remembers, for each process▪

Initially, every process' root directory is the filesystem root directory▪

Only root can call chroot()▪

By calling this syscall, we can make a subset of the filesystem look like it was the full
filesystem for a set of processes (namespace)

▪

Namespaces also isolate all these other identifiers

System entities such as network ports, process IDs, … are still not isolated□

Processes within a namespace can still send signals to other processes outside
of it

□

Chroot environments are not full containers▪

Unix chroot() system call has a similar purpose:○

Same for processes and users□

E.g.: two equals port numbers in different namespaces create no ambiguity▪

Normally processes share the same namespace▪

It generalize the fork() and pthread_create() calls□
Both processes and thread share something with the creator and have
something private

□

A process can start a new namespace with the clone() syscall and its ascendants will
inherit it

▪

System entities are grouped in namespaces○

Namespaces1.

Namespaces isolate all system entities but do not limit resources (so processes can
indirectly interfere b/w them)

○

A process cannot escape a control group▪

Control groups define a group of processes that will have limited resources○

Control groups can then be linked so subsystems▪

A group of limited resources is called a subsystem○

Control groups2.

Kernel features used by containers

Containers
Saturday, September 23, 2017 11:29

 Lettieri Page 38

